Miyaoka-Yau inequality for hyperplane arrangements

Martin de Borbon arXiv: 2411.09573 (joint with Dmitri Panov)

BIMSA AG Seminar

23/10/2025

Plan

• Main result: $Q \leq 0$ on C

• Proof

• Examples

BIMSA AG Seminar

The (Hirzebruch) quadratic form Q

- Let $\mathcal{H} = \{H_1, \dots, H_k\}$ be a hyperplane arrangement, i.e., a finite set of pairwise distinct complex hyperplanes $H_i \subset \mathbb{CP}^n$
- The multiplicity of a linear subspace $L \subset \mathbb{CP}^n$ is

$$m(L) := \left| \left\{ H_i \in \mathcal{H} \, \middle| \, H_i \supset L \right\} \right|$$

Figure 1: Multiplicity 2 (red) and 3 (green).

3/21

The Hirzebruch quadratic form Q

- $\mathcal{H} = \{H_1, \dots, H_k\}$ hyperplane arrangement in \mathbb{CP}^n
- σ_i = number of codimension 2 subspaces $L \subset H_i$ with $m(L) \geq 3$
- The Hirzebruch quadratic form of \mathcal{H} is the homogeneous degree 2 polynomial on \mathbb{R}^k given by

$$Q(a_1, \dots, a_k) = \sum_{i,j=1}^k Q_{ij} a_i a_j$$

$$Q_{ij} = \begin{cases} -(n+1)\sigma_i + 2n & \text{if } i = j \\ -2 & \text{if } i \neq j \text{ and } m(H_i \cap H_j) = 2 \\ n-1 & \text{if } i \neq j \text{ and } m(H_i \cap H_j) \geq 3 \end{cases}$$

BIMSA AG Seminar 23/10/2025

4/21

Line arrangements (Hirzebruch, 1983-85)

Algebraic surfaces with extreme Chem numbers

Let σ_i be the number of points p with $r_p \ge 3$ lying on the i-th line of the given arrangement of k lines in the plane. We consider the $(k \times k)$ -symmetric matrix A with

(3)
$$A_{ij} = \begin{cases} 3\sigma_i - 4 & (i = j), \\ 2 & (i \neq j, p \in L_i \cap L_j \text{ with } r_p = 2), \\ -1 & (i \neq j, p \in L_i \cap L_j \text{ with } r_p \geqslant 3). \end{cases}$$

With the k lines we associate real variables x_i and let x be the column vector $(x_1, ..., x_k)$. With the s points p_j with $r_{p_j} \ge 3$ we associate real variables y_j . For each point p_j with $r_{p_j} \ge 3$ we consider the linear form

$$P_i(x, y) = 2y_i + \sum_{p_i \in L_i} x_i$$
, where $y = (y_i, \ldots, y_s)$.

Höfer's formula. For the algebraic surface Y (a good covering of S of degree d with respect to $L_1, \ldots, L_k, E_1, \ldots, E_s$ and the given branching numbers $n_1, \ldots, n_k, m_1, \ldots, m_s$) we have

(4)
$$(3c_2(Y) - c_1^2(Y))/d = \frac{1}{4} \left(x^t A x + \sum_{j=1}^t P_j(x, y)^2 \right),$$

where $x_i = 1 - \frac{1}{n_i}$ and $y_j = -1 - \frac{1}{m_j}$.

137

The (semi-stable) cone C

- A basis of $\mathcal{H} = \{H_1, \dots, H_k\}$ is a subset $\mathcal{B} \subset \mathcal{H}$ consisting of n+1 linearly independent hyperplanes
- The indicator vector of \mathcal{B} is the 1/0 vector

$$\mathbf{e}_{\mathcal{B}} = \sum_{i \, | \, H_i \in \mathcal{B}} \mathbf{e}_i$$

where $\mathbf{e}_1, \dots, \mathbf{e}_k$ are the standard basis vectors of \mathbb{R}^k

ullet The matroid polytope is the convex hull of the vectors ${f e}_{\mathcal{B}}$

$$P = \operatorname{conv}\{ \mathbf{e}_{\mathcal{B}} \mid \mathcal{B} \text{ is a basis of } \mathcal{H} \}$$

Note: P is contained in the (k-1)-simplex $\Delta \subset \mathbb{R}^k$ with

$$\Delta = \{ (a_1, \dots, a_k) \in \mathbb{R}^k \mid a_i \ge 0, \sum_i a_i = n+1 \}$$

The semistable cone C

• The semistable cone is the cone over the matroid polytope

$$C = \mathbb{R}_{>0} \cdot P = \text{cone } \{ \mathbf{e}_{\mathcal{B}} \mid \mathcal{B} \text{ is a basis of } \mathcal{H} \}$$

It is a convex polyhedral cone contained in the octant $(\mathbb{R}_{\geq 0})^k$

• The stable cone is the interior of $C \subset \mathbb{R}^k$

$$C^{\circ} = \operatorname{int}(C)$$

• \mathcal{H} is essential and irreducible \iff dim P = k - 1 \iff C° is non empty

The stable cone C°

- Let \mathcal{L} be the finite set of non-empty and proper linear subspaces $L \subset \mathbb{CP}^n$ obtained by intersecting members of \mathcal{H}
- Let $\mathbf{a} = (a_1, \dots, a_k) \in (\mathbb{R}_{>0})^k$ then $\mathbf{a} \in C^{\circ} \iff \forall L \in \mathcal{L}$:

$$\sum_{i \mid H_i \supset L} a_i < \frac{\operatorname{codim} L}{n+1} \cdot \sum_{i=1}^k a_i$$

Relation to Geometric Invariant Theory

- Standard embedding $\mathbb{CP}^n \subset \mathfrak{su}(n+1)^*$ as a coadjoint orbit, e.g., if n=1 then $\mathbb{CP}^1=S^2\subset\mathbb{R}^3$
- Let $p_i \in (\mathbb{CP}^n)^*$ be the annihilator of H_i
- $(a_1, \ldots, a_k) \in C^{\circ} \iff \exists F \in SL(n+1, \mathbb{C}) \text{ such that the centre of }$ mass of the points $F(p_i)$ with weights a_i is $0 \in \mathfrak{su}(n+1)^*$

8/21

Main Result

Theorem (Miyaoka-Yau inequality, dB-Panov 2024)

The Hirzebruch quadratic form is non-positive on the semistable cone:

$$C\subset \{Q\leq 0\}$$

- If n = 2 this follows from Panov's Polyhedral Kähler Manifolds, Geometry & Topology, 2009
- Conjecture: if $\mathbf{a} = (a_1, \dots, a_k) \in C^{\circ}$ is such that $Q(\mathbf{a}) = 0$ and $a_i \in (0,1)$. Then there is a Kähler metric on \mathbb{CP}^n of constant holomorphic sectional curvature with cone angles $2\pi(1-a_i)$ along the hyperplanes $H_i \in \mathcal{H}$
 - If \mathcal{H} is a complex reflection arrangement then the metrics have been constructed by Couwenberg-Heckman-Looijenga (IHÉS, 2005)

9/21

• dB-Panov, Polyhedral Kähler metrics on \mathbb{CP}^n , arXiv:2510.17447

Proof: klt and CY arrangements

- We can assume that \mathcal{H} is essential and irreducible
- It is enough to show that if $\mathbf{a} \in C^{\circ}$ then $Q(\mathbf{a}) \leq 0$
- after scaling $\mathbf{a} \mapsto \lambda \cdot \mathbf{a}$ we can assume that

$$\sum_{i} a_i = n + 1$$

• $\mathbf{a} \in C^{\circ}$ is equivalent to

$$\forall L \in \mathcal{L}: \sum_{i \mid H_i \supset L} a_i < \operatorname{codim} L$$

Taking $L = H_i$ we have $a_i \in (0, 1)$

• the pair $(\mathbb{CP}^n, \sum a_i H_i)$ is klt and Calabi-Yau (CY)

Proof: the resolution

• Logarithmic resolution

$$X \xrightarrow{\pi} \mathbb{CP}^n$$

with $D = \pi^{-1}(\mathcal{H})$ a simple normal crossing divisor

- ullet X is the minimal De Concini-Procesi wonderful model of ${\mathcal H}$
- X is obtained by blowing up the *irreducible subspaces* $\mathcal{L}_{irr} \subset \mathcal{L}$ in increasing order of dimension
- The irreducible components of D are in bijective correspondence with non-empty and proper irreducible subspaces $L \in \mathcal{L}_{irr}$

$$D = \bigcup_{L \in \mathcal{L}_{irr}} D_L$$

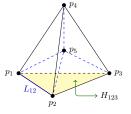
where D_L is the unique irreducible component of D such that

$$\pi(D_L) = L$$

Proof: the resolution (example)

Let $p_1, \ldots, p_5 \in \mathbb{CP}^3$ be five points in general linear position

$$\mathcal{H} = 10 \text{ planes}$$



- Step 1: $X_1 \xrightarrow{\sigma_1} \mathbb{CP}^3$ is the blowup at the five points p_i
- Step 2: $X \xrightarrow{\sigma_2} X_1$ is the blowup at the 10 (disjoint) proper transforms of the lines L_{ij}

12 / 21

$$\pi^{-1}(\mathcal{H}) = \underbrace{\left(\bigcup_{H} D_{H}\right)}_{10 \text{ divisors } \cong \mathrm{Bl}_{4} \, \mathbb{P}^{2}} \, \underbrace{\left(\bigcup_{L} D_{L}\right)}_{10 \text{ divisors } \cong \mathbb{P}^{1} \times \mathbb{P}^{1}} \, \underbrace{\left(\bigcup_{p} D_{p}\right)}_{5 \text{ divisors } \cong \mathrm{Bl}_{4} \, \mathbb{P}^{2}}$$

Remark:
$$X = \overline{M_{0,6}}$$

Proof: the parabolic bundle

Parabolic bundle \mathcal{E}_* on (X, D) defined by:

- vector bundle $\mathcal{E} = \pi^*(T\mathbb{CP}^n)$
- weights a_L for $L \in \mathcal{L}_{irr}$ given by

$$a_L = (\operatorname{codim} L)^{-1} \sum_{i \mid H_i \supset L} a_i$$

klt
$$\iff a_L \in (0,1)$$

• increasing filtrations of $\mathcal{E}|_{D_L}$ by vector subbundles

$$F_a^L = \begin{cases} \pi^*(TL) & \text{if } 0 \le a < a_L \\ \mathcal{E}|_{D_L} & \text{if } a_L \le a < 1 \end{cases}$$

$$CY \iff par-c_1(\mathcal{E}_*) = 0$$

Proof: the stability theorem

• Fix positive integers b_L for L in $\mathcal{L}_{irr}^{\circ} = \mathcal{L}_{irr} \setminus \mathcal{H}$ such that

$$P_N = N \cdot \pi^* \big(\mathcal{O}_{\mathbb{P}^n}(1) \big) - \sum_{L \in \mathcal{L}_{\text{ipr}}^{\circ}} b_L \cdot D_L$$

is an ample line bundle on X for all $N \gg 1$

• Stability Theorem. If $\mathcal{V} \subset \mathcal{E}$ is a proper saturated subsheaf then

$$\operatorname{par-c}_1(\mathcal{V}_*) \cdot c_1(P_N)^{n-1} < 0$$

14 / 21

where \mathcal{V}_* is the naturally induced parabolic structure on \mathcal{V}

Proof: the Bogomolov-Gieseker inequality

• The Bogomolov-Gieseker inequality for stable parabolic bundles (proved by T. Mochizuki in 2006, *Astérisque*) asserts that

$$p(N) := \operatorname{par-ch}_2(\mathcal{E}_*) \cdot c_1(P_N)^{n-2} \le 0$$

- p(N) a polynomial of degree n-2 in N
- Calculation of par-ch₂(\mathcal{E}_*) and cup products in $H^*(X,\mathbb{Z})$ show

$$p(N) = Q(\mathbf{a}) \cdot N^{n-2} + O(N^{n-3})$$

• Since $p(N) \leq 0$ for $N \gg 1$, we must have $Q(\mathbf{a}) \leq 0$

Proof of the Stability Theorem

Baby case: $T\mathbb{CP}^n$ is stable

Proof: let $\mathcal{V} \subset T\mathbb{CP}^n$ be a distribution of index $i = c_1(\mathcal{V})$ and rank r Let $P \subset \mathbb{CP}^n$ be a generic line so that:

$$\mathcal{V}|_P = \mathcal{O}_{\mathbb{P}^1}(d_1) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^1}(d_r)$$

is a vector subbundle of $T\mathbb{CP}^n|_P = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^1}(1)$ and P is transversal to \mathcal{V} , i.e., $TP \not\subset \mathcal{V}|_P$ then $d_i \leq 1$ for all i and

$$c_1(\mathcal{V}) = d_1 + \ldots + d_r \le r \quad \square$$

Proof of the Stability Theorem

Key estimate

Suppose that $(\mathcal{H}, \mathbf{a})$ is a weighted arrangement that is klt and CY. Then there is $\delta > 0$ such that, for any distribution $\mathcal{V} \subset T\mathbb{CP}^n$ with index $i = c_1(\mathcal{V}) > 0$, we have

$$\sum_{H|H \pitchfork \mathcal{V}} a_H \ge \imath + \delta \,,$$

where the sum is over all $H \in \mathcal{H}$ that are transverse to \mathcal{V} .

Example. Let $M \subset \mathbb{CP}^n$ be a linear subspace with dim M = r - 1 for some $1 \le r \le n-1$. The collection of all r-dimensional subspaces that contain M defines a distribution $\mathcal{V} \cong \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus r}$ of index i = r. A hyperplane is tangent to \mathcal{V} if and only if $H \supset M$.

23/10/2025 17 / 21

Application

Theorem (dB-Panov, 2024)

Suppose that for all $L \in \mathcal{L}$ we have

$$m(L) < \operatorname{codim} L \cdot \frac{k}{n+1} \quad (i.e. \ \mathbf{1} \in C^{\circ})$$

Then

$$\sum_{L \in \mathcal{L}^{n-2}} m_L \ge \left(1 - \frac{2}{n+1}\right) k^2 + k \quad (i.e. \ Q(\mathbf{1}) \le 0)$$

Equality holds if and only if every $H \in \mathcal{H}$ intersects $\mathcal{H} \setminus \{H\}$ along

$$\left(1 - \frac{2}{n+1}\right)k + 1 \quad (i.e. \ \mathbf{1} \in \ker Q)$$

codimension 2 subspaces.

Hirzebruch arrangements

A hyperplane arrangement \mathcal{H} is Hirzebruch if:

• for every subspace $L \in \mathcal{L}$ we have

$$\frac{m_L}{\operatorname{codim} L} \le \frac{k}{n+1}$$

• every $H \in \mathcal{H}$ intersects the others along

$$\left(1 - \frac{2}{n+1}\right)k + 1$$

codimension 2 subspaces.

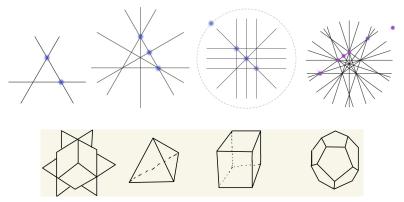
Examples: (i) The n+1 coordinate hyperplanes in \mathbb{CP}^n .

(ii) If n=1 and $|\mathcal{H}|\geq 2$ then \mathcal{H} is Hirzebruch. If $n\geq 2$ then Hirzebruch arrangements are more rare

(iii) Irreducible complex reflection arrangements

Hirzebruch line arrangements/Geometrization

Hirzebruch's problem 1985. Consider an arrangement of k lines in $\mathbb{C}P^2$ such that each line intersects others in exactly k/3+1 points. Does such an arrangement consist of mirrors of a finite reflection group?



Panov (Geometry & Topology, 2018): there exist exactly four Hirzebruch line arrangements in \mathbb{RP}^2

20 / 21

THANK YOU!