Parabolic bundles and convex spherical metrics

Martin de Borbon

King's College London

4 March, USTC

Martin de Borbon (KCL) and the set of the set

Background: Troyanov/Luo-Tian Theorem

Fix $n \geq 3$ points $x_i \in \mathbb{CP}^1$ together with real numbers $0 < \alpha_i < 1$ s.t.

$$
\sum_{i=1}^{n} (1 - \alpha_i) < 2 \quad \text{(Gauss-Bonnet)}
$$
\n
$$
(1 - \alpha_i) < \sum_{j \neq i} (1 - \alpha_j) \quad \text{(Stability)}
$$

Theorem (Troyanov, Luo-Tian)

There exists a unique conformal spherical metric q on $\mathbb{C}P^1$ with cone angles $2\pi\alpha_i$ at x_i

• Outside $\{x_i\}$ we can find local complex coordinate z s.t.

$$
g = \frac{4}{(1+|z|^2)^2} |dz|^2 \tag{1}
$$

• At x_i we can find centred complex coordinate z such that g is equal to the pull-back of [\(1\)](#page-1-0) by $z \mapsto z^{\alpha_i}$

Introduction

- Joint work with Dmitri Panov: prove the Troyanov/Luo-Tian Theorem using parabolic bundles
- Precedents: Lingguang Li, Jijian Song, and Bin Xu: Irreducible cone spherical metrics and stable extensions of two line bundles Semin Kim and Graeme Wilkin: Analytic convergence of harmonic metrics for parabolic Higgs bundles
- Motivation: Extend the method to higher complex dimensions. Produce conical Fubini-Study metrics and (introducing a Higgs field) conical complex hyperbolic metrics. (Cone angles $\langle 2\pi \rangle$ E.g. Carlos Simpson: Constructing variations of Hodge structures using Yang-Mills theory and application to uniformization (smooth case, complex hyperbolic surfaces)

Parabolic bundles

- X compact Riemann surface with marked points ${x_i}_{i=1}^n \subset X$
- \bullet E holomorphic vector bundle over X

Definition (Parabolic structure E_* on E)

 ${E_a^i}$ locally free sheaves $(1 \le i \le n$ and $a \in \mathbf{R})$ with $E_1^i = E$ s.t:

- (i) Increasing filtration: $E_a^i \subset E_{a'}^i$ for $a < a'$
- (ii) Semi-continuity: $E_{a+\epsilon}^i = E_a^i$ for $0 < \epsilon \ll 1$

(iii) Periodicity: $E_{a-1}^i = E_a^i \otimes \mathcal{O}(-x_i)$

- Enough to know E_a^i for $0 < a \leq 1$
- $E_a^i = E$ on $X \setminus \{x_i\}$
- The quotients $E_a^i/E_{\leq a}^i$ are skycraper sheaves supported at x_i
- $E_* \iff \text{flags at the fibres } E_{x_i} \text{ together with weights}$

Parabolic degree and stability

Recall $deg(E) = \int_X c_1(E)$

Definition (Parabolic degree)

$$
\operatorname{par-deg}(E_*) = \deg(E) - \sum_{i} \sum_{a} a \cdot \operatorname{rk}(E_a^i / E_{
$$

Definition (Parabolic stability)

 E_* is stable if for every non-zero locally free sheaf $V \subsetneq E$ we have

$$
\frac{\operatorname{par-deg}(V_*)}{\operatorname{rk} V} < \frac{\operatorname{par-deg}(E_*)}{\operatorname{rk} E}
$$

where V_* is the induced parabolic structure given by $V_a^i = V \cap E_a^i$

The parabolic structure

- Let ${x_i}_{i=1}^n \subset \mathbf{CP}^1$ together with $0 < \alpha_i < 1$ as in Troy./Luo-Tian
- The vector bundle: $E = \mathcal{O}(1) \oplus \mathcal{O}(n-1)$ over $X = \mathbb{C}P^1$
- Weights: $0 < a_{i1} < a_{i2} < 1$ given by

$$
a_{i1} = \frac{1 - \alpha_i}{2}, \quad a_{i2} = \frac{1 + \alpha_i}{2}
$$

Flags: $\{0\} \subsetneq F_i \subsetneq E_{x_i}$ in the fibres E_{x_i} given by

$$
F_i = \mathcal{O}(1)_{x_i} \text{ for } i = 1, \dots, n-1
$$

$$
F_n = \mathbf{C} \cdot v_n \text{ with } v_n \notin \mathcal{O}(1)_{x_n} \text{ and } v_n \notin \mathcal{O}(n-1)_{x_n}
$$

• The parabolic structure E_* is given by

 $E_a^i =$ $\sqrt{ }$ \int \mathcal{L} sections of E that vanish at x_i for $0 < a \leq a_{i1}$ sections of E that are tangent to F_i for $a_{i1} \le a < a_{i2}$ sections of E for $a_{i2} \le a \le 1$

Stability Proposition

 $\frac{\text{par-deg }E_* = 0}{\text{Proof: part-deg }E_* = \text{deg }E - \sum_i (a_{i1} + a_{i2})$ while $\deg E = n$ and $a_{i1} + a_{i2} = 1$ for each i

Stability Proposition

 E_* is stable, i.e., \forall line sub-bundle $L \subset E \implies$ par-deg $L_* < 0$

$$
\text{par-deg } L_* = \text{deg } L - \sum_{F_i \subset L_{x_i}} a_{i1} - \sum_{F_i \not\subset L_{x_i}} a_{i2} \tag{*}
$$

Since par-deg $L_* < \text{deg } L$ we can assume $\text{deg } L > 0$

Auxiliary Lemma: line sub-bundes $L \subset E$ of positive degree

- If deg $L > 1$ then $L = \mathcal{O}(n-1)$
- If deg $L = 1$ then there is at least one $1 \leq i \leq n$ s.t. $F_i \not\subset L_{x_i}$

Proof of Stability Proposition

If $L = \mathcal{O}(n-1)$ then $F_i \not\subset L_{x_i}$ for all i and

par-deg
$$
L_* = n - 1 - \frac{1}{2} \sum_i (1 + \alpha_i)
$$

= $-1 + \frac{1}{2} \sum_i (1 - \alpha_i) < 0$ (by Gauss-Bonnet)

If $\deg L = 1$ let $1 \leq i \leq n$ s.t. $F_i \not\subset L_{x_i}$ then

par-deg
$$
L_* \le 1 - \frac{\alpha_i + 1}{2} - \frac{1}{2} \sum_{j \ne i} (1 - \alpha_j)
$$

= $\frac{1 - \alpha_i}{2} - \frac{1}{2} \sum_{j \ne i} (1 - \alpha_j) < 0$ (by Stability)

H

Proof of Auxiliary Lemma

Compose $L \subset E$ with projections to get

$$
\sigma_1 \in H^0(L^* \otimes \mathcal{O}(1)), \quad \sigma_2 \in H^0(L^* \otimes \mathcal{O}(n-1))
$$

If $\deg L > 1$ then $\deg(L^* \otimes \mathcal{O}(1)) < 0$ so $\sigma_1 = 0$ and $L = \mathcal{O}(n-1)$ • If deg $L = 1$ then σ_1 is an isomorphism and

$$
s = \sigma_2 \circ \sigma_1^{-1} \in H^0(\mathcal{O}(n-2))
$$

If
$$
F_i = \mathcal{O}(1)_{x_i} \subset L_{x_i}
$$
 for $i = 1, ..., n-1$ then $s(x_i) = 0$ for $i = 1, ..., n-1$. Hence $s = 0$, so $L = \mathcal{O}(1)$ and $F_n \not\subset L_{x_n}$
Aut $E = \left\{ \begin{pmatrix} \lambda_1 & 0 \\ P & \lambda_2 \end{pmatrix} \right\}$ with $\lambda_1, \lambda_2 \in \mathbb{C}^*$ and $P \in H^0(\mathcal{O}(n-2)) \right\}$

 $\mathbf{F} = \{F_1, \ldots, F_n\}$ is uniquely characterized (up to $\text{Aut}(E)/C^*$) by: $F_i \cap \mathcal{O}(n-1) = \{0\}$ $\forall i$ and $\sharp L \subset E$ with $\deg L = 1$ and $\mathbf{F} \subset L$

Martin de Borbon (KCL) and the set of the set

Logarithmic connections

- X compact Riemann surface $D = x_1 + \ldots + x_n$ divisor
- $\Omega^1(\log D)$ meromorphic 1-forms with simple poles at x_i
- \bullet E holomorphic vector bundle over X

Definition (Logarithmic connection)

C-linear $\nabla: E \to E \otimes \Omega^1(\log D)$ with $\nabla (fs) = df \cdot s + f \nabla s$

Complex coordinate t centred at x_i and w.r.t. holomorphic frame

$$
\nabla = d - A(t) \frac{dt}{t}
$$

Definition (Residue)

 $\text{Res}_{x_i}(\nabla) = A(0) \in \text{End}(E_{x_i})$

Definition (Log. connect. compatible with parabolic structure)

 ∇ compatible with E_* if

(i) $\text{Res}_{x_i}(\nabla)$ preserve the subspaces $E_a^i/E_0^i \subset E_{x_i}$ for all $0 < a \leq 1$

- (ii) $\text{Res}_{x_i}(\nabla)$ acts on $E_a^i/E_{\leq a}^i$ as scalar multiplication by a
- (iii) ∇ restricts to logarithmic connection on E_a^i for all $0 < a \leq 1$

Parabolic Kobayashi-Hitchin correspondence in complex dimension 1:

Theorem (Mehta-Seshadri)

If par-deg $E_* = 0$ and E_* is stable then it admits a unique **unitary** logarithmic connection compatible with E_*

Rmk: Logarithmic \implies Flat (because dim_C X = 1)

The connection

Recall:

$$
\bullet \ x_i \in \mathbf{CP}^1, \ 0 < \alpha_i < 1
$$

 $\bullet E = \mathcal{O}(1) \oplus \mathcal{O}(n-1)$ with parabolic structure E_* given by

(i) Flags $\mathbf{F} = \{F_1, \ldots, F_n\}$ with $F_i = \mathcal{O}(1)_{x_i}$ for $1 \leq i \leq n-1$ and $F_n \not\subset \mathcal{O}(1)_{x_n} \cup \mathcal{O}(n-1)_{x_n}$

(ii) Weights $0 < a_{i1} < a_{i2} < 1$ with $a_{i1} = \frac{1 - \alpha_i}{2}$ and $a_{i2} = \frac{1 + \alpha_i}{2}$

Apply Mehta-Seshadri to E_* to obtain:

- ∇ logarithmic connection on E
- $F_i = a_{i1}$ -eigenspace of $\text{Res}_{x_i}(\nabla)$
- Holomorphic trivialization close to x_i

$$
\nabla = d - \begin{pmatrix} a_{i1} & 0 \\ 0 & a_{i2} \end{pmatrix} \frac{dt}{t}
$$
 (*)

Note: $a_{i2} - a_{i1} = \alpha_i \notin \mathbb{Z} \implies$ non-resonant Fuchsian singularity

The foliation

• $P(E)$ is the Hirzebruch surface

$$
\Sigma_{n-2} = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(n-2))
$$

 $U = \mathbf{CP}^1 \setminus \{x_1, \ldots, x_n\}$

 $\bullet \nabla \implies$ horizontal distribution on $E|_U \implies$ foliation $\mathcal F$ on $\mathbf P(E)|_U$

 \bullet Leaves of $\mathcal F$ are locally given by projecting flat sections

Extension Lemma

F extends to a singular foliation on Σ_{n-2} tangent to $\mathbf{P}(E)_{x_i}$ with two singularities at $v_{i1} = F_i$ and $v_{i2} = a_{i2}$ -eigenspace of $\text{Res}_{x_i}(\nabla)$

Proof: Use $(**)$ flat sections

$$
t \mapsto \begin{pmatrix} y_1 = c_1 t^{a_{i1}} \\ y_2 = c_2 t^{a_{i2}} \end{pmatrix} \text{ with } c_1, c_2 \in \mathbf{C}
$$

 $y = y_1/y_2 = ct^{-\alpha_i}$ are flat sections of $d + (\alpha_i/t)dt$. Similarly y_2/y_1 П Martin de Borbon (KCL) and the set of the set of the set of the 4 March, USTC 13 / 16

The section

 $\mathcal{O}(n-1) \subset E$ defines a section σ of $\mathbf{P}(E)$ with $\sigma^2 = 2 - n$ \bullet σ is everywhere transversal to $\mathcal F$

Proof: The total number of tangencies of $\mathcal F$ with a curve is

$$
\text{Tan}(\mathcal{F}, C) = C^2 - C \cdot T_{\mathcal{F}}
$$

Lifting a holomorphic vector field shows that $T_{\mathcal{F}} = (2 - n) \cdot \mathfrak{f}$ where $f =$ class of a fibre. Since $\sigma \cdot f = 1$ (because s is a section) we obtain

$$
Tan(\mathcal{F}, \sigma) = \sigma^2 - \sigma \cdot T_{\mathcal{F}} = 0 \quad \Box
$$

The spherical metric

Use σ to pull-back the Fubini-Study metrics on the fibres:

 e_1, e_2 parallel unitary frame on $V \subset \mathbf{CP}^1 \setminus \{x_1, \ldots, x_n\}$

•
$$
\sigma \iff f: V \to \mathbf{CP}^1
$$
 holomorphic

- $df(x) \neq 0 \ \forall x \in V$ because σ is transverse to F
- $g = f^* g_{\mathbf{CP}^1}$ frame independent because $g_{\mathbf{CP}^1}$ is $U(2)$ -invariant

Cone angles

The conformal spherical metric g on $\mathbf{CP}^1 \setminus \{x_1, \ldots, x_n\}$ extends over x_i with cone angle $2\pi\alpha_i$

Proof: $\mathcal{F} =$ flat sections of $d + (\alpha_i/t)dt$ and $\sigma = f(t)$ with $f(0) \neq 0$

$$
(t,0) \mapsto (t, f(t)) \xrightarrow{\text{leaves of } \mathcal{F}} (1, t^{\alpha_i} f(t))
$$

Take $z = tf(t)^{1/\alpha_i}$ so g is the pull-back of $g_{\mathbf{CP}^1}$ under $z \mapsto z^{\alpha_i}$

THANK YOU!