@article{cpn,abbr={arXiv},bibtex_show={false},html={https://arxiv.org/abs/2510.17447},title={Polyhedral Kähler metrics on \(\mathbb{CP}^n\)},author={dB, M. and Panov, Dmitri},journal={arXiv},year={2025}}
QJM
Local classification of Kähler metrics with constant holomorphic sectional curvature
We prove the local classification of Kähler metrics with constant holomorphic sectional curvature by exploiting the geometry of the bundle of \(1\)-jets of holomorphic functions.
@article{chsc,abbr={QJM},bibtex_show={false},html={https://doi.org/10.1093/qmath/haaf046},author={dB, M.},title={Local classification of Kähler metrics with constant holomorphic sectional curvature},journal={The Quarterly Journal of Mathematics},pages={haaf046},year={2025},issn={0033-5606},doi={10.1093/qmath/haaf046},url={https://doi.org/10.1093/qmath/haaf046},eprint={https://academic.oup.com/qjmath/advance-article-pdf/doi/10.1093/qmath/haaf046/65669322/haaf046.pdf}}
2024
arXiv
A Miyaoka-Yau inequality for hyperplane arrangements in \(\mathbb{CP}^n\)
@article{miyaokayau,abbr={arXiv},bibtex_show={false},html={https://arxiv.org/abs/2411.09573},title={A Miyaoka-Yau inequality for hyperplane arrangements in \(\mathbb{CP}^n\)},author={dB, M. and Panov, Dmitri},journal={arXiv},year={2024}}
AUF
Some models for bubbling of (log) Kähler-Einstein metrics
@article{bubbles,abbr={AUF},bibtex_show={false},html={https://link.springer.com/article/10.1007/s11565-024-00520-w},title={Some models for bubbling of (log) Kähler-Einstein metrics},author={dB, M. and Spotti, Cristiano},journal={Ann. Univ. Ferrara},volume={70},pages={1037--1068},year={2024}}
AFST
Dunkl connections on \(\mathbb{C}^2\) and spherical metrics
@article{dunkl,abbr={AFST},bibtex_show={false},html={https://afst.centre-mersenne.org/articles/10.5802/afst.1791/},title={Dunkl connections on \(\mathbb{C}^2\) and spherical metrics},author={dB, M. and Panov, Dmitri},journal={Annales de la Facultè des Sciences de Toulouse},pages={937--979},year={2024},publisher={Universit\'e Paul Sabatier, Toulouse},volume={Ser. 6, 33},number={4},doi={10.5802/afst.1791},language={en},url={https://afst.centre-mersenne.org/articles/10.5802/afst.1791/}}
2023
JDG
Calabi-Yau metrics with conical singularities along line arrangements
@article{linearrangements,abbr={JDG},bibtex_show={false},html={https://projecteuclid.org/journals/journal-of-differential-geometry/volume-123/issue-2/CalabiYau-metrics-with-conical-singularities-along-line-arrangements/10.4310/jdg/1680883576.short},title={Calabi-Yau metrics with conical singularities along line arrangements},author={dB, M. and Spotti, Cristiano},journal={Journal of Differential Geometry},year={2023}}
2022
JLMS
Calabi-Yau metrics with cone singularities along intersecting complex lines: the unstable case
@article{3lines,abbr={JLMS},bibtex_show={false},html={https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12558},author={dB, M. and Edwards, Gregory},title={Calabi-Yau metrics with cone singularities along intersecting complex lines: the unstable case},journal={J. Lond. Math. Soc.},fjournal={Journal of the London Mathematical Society.},volume={},year={2022},number={},pages={},issn={},mrclass={},mrnumber={},mrreviewer={},doi={10.1112/jlms.12558},url={https://doi.org/10.1112/jlms.12558}}
Selecta
Toric Sasaki-Einstein metrics with conical singularities
@article{toric,abbr={Selecta},bibtex_show={false},html={https://link.springer.com/article/10.1007/s00029-022-00778-y},title={Toric Sasaki-Einstein metrics with conical singularities},author={dB, M. and Legendre, Eveline},journal={Selecta Mathematica},year={2022},doi={10.1007/s00029-022-00778-y},url={https://doi.org/10.1007/s00029-022-00778-y}}
@article{parabolic,abbr={Proc. AMS},bibtex_show={false},html={https://doi.org/10.1090/proc/16052},title={Parabolic bundles and spherical metrics},author={dB, M. and Panov, Dmitri},journal={Proc. Amer. Math. Soc.},year={2022},doi={https://doi.org/10.1090/proc/16052}}
@article{schauder,abbr={CMH},bibtex_show={false},html={https://www.ems-ph.org/journals/show_abstract.php?issn=0010-2571&vol=96&iss=1&rank=5&p403=1},author={dB, M. and Edwards, Gregory},title={Schauder estimates on products of cones},journal={Comment. Math. Helv.},fjournal={Commentarii Mathematici Helvetici. A Journal of the Swiss
Mathematical Society},volume={96},year={2021},number={1},pages={113--148},issn={0010-2571},mrclass={35J75 (32Q15 35R01)},mrnumber={4228616},doi={10.4171/cmh/509},url={https://doi.org/10.4171/cmh/509}}
arXiv
Polyhedral Kähler cone metrics on \(\mathbb{C}^n\) singular at hyperplane arrangements
@article{pk,abbr={arXiv},bibtex_show={false},html={https://arxiv.org/abs/2106.13224},title={Polyhedral Kähler cone metrics on \(\mathbb{C}^n\) singular at hyperplane arrangements},author={dB, M. and Panov, Dmitri},journal={arXiv},year={2021}}
2019
IMRN
Asymptotically conical Calabi-Yau metrics with cone
singularities along a compact divisor
@article{ale,abbr={IMRN},bibtex_show={false},html={https://academic.oup.com/imrn/article-abstract/2021/2/1198/5640301},author={dB, M. and Spotti, Cristiano},title={Asymptotically conical Calabi-Yau metrics with cone
singularities along a compact divisor},journal={Int. Math. Res. Not.},fjournal={International Mathematics Research Notices. IMRN},year={2019},number={2},pages={1198--1223},issn={1073-7928},mrclass={32Q25 (14J32 32M10 53C55)},mrnumber={4201965},doi={10.1093/imrn/rnz280},url={https://doi.org/10.1093/imrn/rnz280}}
@article{localmodels,abbr={Proc. AMS},bibtex_show={false},html={https://www.ams.org/journals/proc/2019-147-03/S0002-9939-2018-14302-6/},author={dB, M. and Spotti, Cristiano},title={Local models for conical Kähler-Einstein metrics},journal={Proc. Amer. Math. Soc.},fjournal={Proceedings of the American Mathematical Society},volume={147},year={2019},number={3},pages={1217--1230},issn={0002-9939},mrclass={53C55 (53C25)},mrnumber={3896068},mrreviewer={Chengjian Yao},doi={10.1090/proc/14302},url={https://doi.org/10.1090/proc/14302}}
2017
AGAG
Kähler metrics with cone singularities along a divisor of
bounded Ricci curvature
@article{boundedricci,abbr={AGAG},bibtex_show={false},html={https://link.springer.com/article/10.1007/s10455-017-9565-1},author={dB, M.},title={Kähler metrics with cone singularities along a divisor of
bounded Ricci curvature},journal={Ann. Global Anal. Geom.},fjournal={Annals of Global Analysis and Geometry},volume={52},year={2017},number={4},pages={457--464},issn={0232-704X},mrclass={32Q15 (53C55)},mrnumber={3735907},mrreviewer={Rafa\l Czy\.{z}},doi={10.1007/s10455-017-9565-1},url={https://doi.org/10.1007/s10455-017-9565-1}}
@article{gibbonshawking,abbr={JGP},bibtex_show={false},html={https://www.sciencedirect.com/science/article/pii/S0393044017301584?via%3Dihub},author={dB, M.},title={The Gibbons-Hawking ansatz over a wedge},journal={J. Geom. Phys.},fjournal={Journal of Geometry and Physics},volume={120},year={2017},pages={228--241},issn={0393-0440},mrclass={53C55 (31C12 32Q15 32Q26 53C21)},mrnumber={3712159},mrreviewer={Bogdan D. Suceav\u{a}},doi={10.1016/j.geomphys.2017.06.002},url={https://doi.org/10.1016/j.geomphys.2017.06.002}}
JLMS
Asymptotically conical Ricci-flat Kähler metrics on \(\mathbb{C}^2\) with cone singularities along a complex curve
@article{acrf,abbr={JLMS},bibtex_show={false},html={https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12070},author={dB, M.},title={Asymptotically conical Ricci-flat Kähler metrics on \(\mathbb{C}^2\) with cone singularities along a complex curve},journal={J. Lond. Math. Soc.},fjournal={Journal of the London Mathematical Society. Second Series},volume={96},year={2017},number={2},pages={425--454},issn={0024-6107},mrclass={53C55 (14J32 32W20 53C21 53C25 58J05)},mrnumber={3708957},mrreviewer={Ronan J. Conlon},doi={10.1112/jlms.12070},url={https://doi.org/10.1112/jlms.12070}}
COMA
Singularities of plane complex curves and limits of Kähler
metrics with cone singularities. I: Tangent cones