@article{miyaokayau,abbr={arXiv},bibtex_show={false},html={https://arxiv.org/abs/2411.09573},title={A Miyaoka-Yau inequality for hyperplane arrangements in \(\mathbb{CP}^n\)},author={dB, M. and Panov, Dmitri},journal={arXiv},year={2024}}
AUF
Some models for bubbling of (log) Kähler-Einstein metrics
@article{bubbles,abbr={AUF},bibtex_show={false},html={https://link.springer.com/article/10.1007/s11565-024-00520-w},title={Some models for bubbling of (log) Kähler-Einstein metrics},author={dB, M. and Spotti, Cristiano},journal={Ann. Univ. Ferrara},volume={70},pages={1037--1068},year={2024}}
2023
JDG
Calabi-Yau metrics with conical singularities along line arrangements
@article{linearrangements,abbr={JDG},bibtex_show={false},html={https://projecteuclid.org/journals/journal-of-differential-geometry/volume-123/issue-2/CalabiYau-metrics-with-conical-singularities-along-line-arrangements/10.4310/jdg/1680883576.short},title={Calabi-Yau metrics with conical singularities along line arrangements},author={dB, M. and Spotti, Cristiano},journal={Journal of Differential Geometry},year={2023}}
2022
AFST
Dunkl connections on \(\mathbb{C}^2\) and spherical metrics
@article{dunkl,abbr={AFST},bibtex_show={false},html={https://arxiv.org/abs/2209.05958},title={Dunkl connections on \(\mathbb{C}^2\) and spherical metrics},author={dB, M. and Panov, Dmitri},journal={to appear in Ann. Fac. Sci. Toulouse},year={2022}}
JLMS
Calabi-Yau metrics with cone singularities along intersecting complex lines: the unstable case
@article{3lines,abbr={JLMS},bibtex_show={false},html={https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12558},author={dB, M. and Edwards, Gregory},title={Calabi-Yau metrics with cone singularities along intersecting complex lines: the unstable case},journal={J. Lond. Math. Soc.},fjournal={Journal of the London Mathematical Society.},volume={},year={2022},number={},pages={},issn={},mrclass={},mrnumber={},mrreviewer={},doi={10.1112/jlms.12558},url={https://doi.org/10.1112/jlms.12558}}
Selecta
Toric Sasaki-Einstein metrics with conical singularities
@article{toric,abbr={Selecta},bibtex_show={false},html={https://link.springer.com/article/10.1007/s00029-022-00778-y},title={Toric Sasaki-Einstein metrics with conical singularities},author={dB, M. and Legendre, Eveline},journal={Selecta Mathematica},year={2022},doi={10.1007/s00029-022-00778-y},url={https://doi.org/10.1007/s00029-022-00778-y}}
@article{parabolic,abbr={Proc. AMS},bibtex_show={false},html={https://doi.org/10.1090/proc/16052},title={Parabolic bundles and spherical metrics},author={dB, M. and Panov, Dmitri},journal={Proc. Amer. Math. Soc.},year={2022},doi={https://doi.org/10.1090/proc/16052}}
@article{schauder,abbr={CMH},bibtex_show={false},html={https://www.ems-ph.org/journals/show_abstract.php?issn=0010-2571&vol=96&iss=1&rank=5&p403=1},author={dB, M. and Edwards, Gregory},title={Schauder estimates on products of cones},journal={Comment. Math. Helv.},fjournal={Commentarii Mathematici Helvetici. A Journal of the Swiss
Mathematical Society},volume={96},year={2021},number={1},pages={113--148},issn={0010-2571},mrclass={35J75 (32Q15 35R01)},mrnumber={4228616},doi={10.4171/cmh/509},url={https://doi.org/10.4171/cmh/509}}
arXiv
Polyhedral Kähler cone metrics on \(\mathbb{C}^n\) singular at hyperplane arrangements
@article{pk,abbr={arXiv},bibtex_show={false},html={https://arxiv.org/abs/2106.13224},title={Polyhedral Kähler cone metrics on \(\mathbb{C}^n\) singular at hyperplane arrangements},author={dB, M. and Panov, Dmitri},journal={arXiv},year={2021}}
2019
IMRN
Asymptotically conical Calabi-Yau metrics with cone
singularities along a compact divisor
@article{ale,abbr={IMRN},bibtex_show={false},html={https://academic.oup.com/imrn/article-abstract/2021/2/1198/5640301},author={dB, M. and Spotti, Cristiano},title={Asymptotically conical Calabi-Yau metrics with cone
singularities along a compact divisor},journal={Int. Math. Res. Not.},fjournal={International Mathematics Research Notices. IMRN},year={2019},number={2},pages={1198--1223},issn={1073-7928},mrclass={32Q25 (14J32 32M10 53C55)},mrnumber={4201965},doi={10.1093/imrn/rnz280},url={https://doi.org/10.1093/imrn/rnz280}}
@article{localmodels,abbr={Proc. AMS},bibtex_show={false},html={https://www.ams.org/journals/proc/2019-147-03/S0002-9939-2018-14302-6/},author={dB, M. and Spotti, Cristiano},title={Local models for conical Kähler-Einstein metrics},journal={Proc. Amer. Math. Soc.},fjournal={Proceedings of the American Mathematical Society},volume={147},year={2019},number={3},pages={1217--1230},issn={0002-9939},mrclass={53C55 (53C25)},mrnumber={3896068},mrreviewer={Chengjian Yao},doi={10.1090/proc/14302},url={https://doi.org/10.1090/proc/14302}}
2017
AGAG
Kähler metrics with cone singularities along a divisor of
bounded Ricci curvature
@article{boundedricci,abbr={AGAG},bibtex_show={false},html={https://link.springer.com/article/10.1007/s10455-017-9565-1},author={dB, M.},title={Kähler metrics with cone singularities along a divisor of
bounded Ricci curvature},journal={Ann. Global Anal. Geom.},fjournal={Annals of Global Analysis and Geometry},volume={52},year={2017},number={4},pages={457--464},issn={0232-704X},mrclass={32Q15 (53C55)},mrnumber={3735907},mrreviewer={Rafa\l Czy\.{z}},doi={10.1007/s10455-017-9565-1},url={https://doi.org/10.1007/s10455-017-9565-1}}
@article{gibbonshawking,abbr={JGP},bibtex_show={false},html={https://www.sciencedirect.com/science/article/pii/S0393044017301584?via%3Dihub},author={dB, M.},title={The Gibbons-Hawking ansatz over a wedge},journal={J. Geom. Phys.},fjournal={Journal of Geometry and Physics},volume={120},year={2017},pages={228--241},issn={0393-0440},mrclass={53C55 (31C12 32Q15 32Q26 53C21)},mrnumber={3712159},mrreviewer={Bogdan D. Suceav\u{a}},doi={10.1016/j.geomphys.2017.06.002},url={https://doi.org/10.1016/j.geomphys.2017.06.002}}
JLMS
Asymptotically conical Ricci-flat Kähler metrics on \(\mathbb{C}^2\) with cone singularities along a complex curve
@article{acrf,abbr={JLMS},bibtex_show={false},html={https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12070},author={dB, M.},title={Asymptotically conical Ricci-flat Kähler metrics on \(\mathbb{C}^2\) with cone singularities along a complex curve},journal={J. Lond. Math. Soc.},fjournal={Journal of the London Mathematical Society. Second Series},volume={96},year={2017},number={2},pages={425--454},issn={0024-6107},mrclass={53C55 (14J32 32W20 53C21 53C25 58J05)},mrnumber={3708957},mrreviewer={Ronan J. Conlon},doi={10.1112/jlms.12070},url={https://doi.org/10.1112/jlms.12070}}
COMA
Singularities of plane complex curves and limits of Kähler
metrics with cone singularities. I: Tangent cones